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ABSTRACT

In this paper, we present two new statistical probability models
connecting n + 1, non­negative real parameters, p

0
, p

1
, p

2
, ..., p

n

such that 0 < p
n
 � p

n
 � ... p

2
 � p

1
 � 0. The rst model concerns with

random variable of discrete type and the second model is its
analogue for the random variable of continuous type.General
formulas the mean, variance, m.g.f., the rth moment, the
skewness and the kurtosis of the discrete model are obtained.
In case of continuous model for n = 1, we also obtain the mean,
variance and the m.g.f.

Key words: Probability density function, statistical model,
moments, kurtosis, skewness and moment generating functions.

1. INTRODUCTION

The probability distributions plays a dominant role in modelling processes
and it is often used to derive more realistic models that need characteristic
observed data. “The theory of probabil ity which originated in
consideration of games of chance should have become the most important
object of human knowledge”. Blaise Pascal and Pierre Fermat are credited
with founding mathematical probability because they solved the problem
of points, the problem of equitably dividing the stakes when a fair game
is halted before either player has enough points to win. This problem
had been discussed for several centuries before 1654 but Pascal and Fermat
were the first to give the solution we now consider correct. During the
century that followed this work, other authors including James and
Nicholas Bernoulli, Pierre Remond de Montmort and Abraham De Moivre
developed more powerful techniques in order to calculate odds in more
complicated games. De Moivre, Thomas Simpson and others also used
the theory to calculate fair prices for annuities and insurance policies
(for reference see S. Ross (2006), G. Shefer (1976, 1982, 1987, 1990, 1992)
and T.M. Apostol (1969)).
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Statistical models describe a phenomenon in the form of mathematical
equations. Thus a large number of observations say 100 or 1000 can be
summarized in an equation with say two unknown quantities (called
parameters of the model). Such reduction is certainly necessary for human
mind. Out of a large number of methods and tools developed so far for
analysing data on the life of science etc.), the statistical models are the
latest innovations. In the literature Hogg and Crag(1970), Johnson and Kotz
(1970), Lawless (1982), S.C. Malik (1984), DeGroot and Schervish (1995), P.
Fan (2006), McCulah and Nelder(1989), J.V. Uspensky (1937), we come
across dierent types of models, e.g., Linear models, Non­linear models,
Generalized linear models, etc. Statistical models form a basic and
promising field of study in the domain of statistics and have many
important applications in a wide variety of disciplines such as social
sciences, biological and medical sciences, physical sciences, operation
research, quality­control, engineering, agriculture and so on (Chakraborti.
S (2015), D. Gupta (1993), G. Deniz (2010), I.S. Kozubowski (2006), C.D. Lai
(2012), A. Jamjoom (2013), G. Deniz (2014)).

Let f(x) = p
x
x

n
 + p

n–1
xn–1 +...+ p

1
x + p

0
 be a polynomial of degree n � 1 with

real coefficients. It is interesting to ask under what conditions of the
coefficient p

0
, p

1
, ...+ p

n
, the polynomial f(x) represents a statistical model.

In case some of the individual coefficients p
i
, 0 � i � n, of the polynomial

f(x) are negative, it is more dicult to guaranty the necessity of positive values
for the probability distyribution f(x). Here, we consider the case when the
coefficients p

0
, p

1
, p

2
 ..., p

n–1
 of the polynomial f(x) are non­negative with p

n

> 0.

In fact, the main aim of this paper is to present two new statistical
probability models connecting n + 1, non­negative real parameters, p

0
, p

1
,

p
2
, ..., p

n
 such that 0 < p

n
 � p

n–1
 ��... � p

2
 � p

1
 � 0. The first model concerns with

random variable of discrete type and the second model is its analogue for
the random variable of continuous type.

Consider the probability distribution of the tossing of a coin, if we
denote tails by x = 0 and heads by x = 1, then the distribution of the
probability of this experiment can be written as

0 1

( ) 1/ 2 1/ 2

X

P X x�

which further can be briey written as

f(x) = 1/2, x = 0, 1 (1.1)

= 0, elsewhere, x = 0, 1
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Here, we prove the following result which involves (n + 1) parameters
and includes (1:1) as a special case.

Theorem 1: If p
0
, p

1
, p

2
, ..., p

n
 be non­negative real numbers such that 0 <

p
n
 � p

n–1
 � ... � p

2
 � p

1
 � p

0
 � 0 and if

f(x) = f(x, p
0
, p

1
, p

2
, ..., p

n
)

= 
0

1

np p�
[(p

n
 – p

n–1
)xn + (p

n–1
 – p

n–2
)xn–1 +...+ (p

1
 – p

0
)x + p

0
], (1.2)

= 0, elsewhere, x = 0, 1,

then the function f(x) is probability mass function (p.m.f) of the random
variable X of discrete type.

Remark: Taking p
1
 = p

2
 =, ..., = p

n
 in Theorem 1, we get (1:1).

Proof of Theorem 1: We have

f(0) = 
0

0

0,
n

p

p p
�

�

f(1) = 
0

0,n

n

p

p p
�

�

so that

1

0

( )
x

f x
�
�  = f(0) + f(1) = 1.

Since f(x) � 0 for all real x. Therefore, f(x) is a probability density function
of random variable X of the Discrete type.

Mean, Variance and m.g.f of Theorem 1

The mean is given by

� = E(X) = 
1

0

( )
x

xf x
�
�

= 0f(0) + 1f(1)

0

.n

n

p

p p
�

�

Now

E(X2) = 
1

2

0

( )
x

x f x
�
�
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= f(1) 
0

,n

n

p

p p
�

�

so that

V ar(X) = �2 = E(X2) – E(X)2

2

0 0

n n

n n

p p

p p p p

� � � �� �� � � �� �� � � �

0 0

1n n

n n

p p

p p p p

� �� �� �� �� �� �� �� �

0

0

n

n n n

p p

p p p p

� �� �� � �� �� �� �� �

0

2
0

.
( )

n

n

p p

p p
�

�

The rth moment of the distribution 1.1 is given by

E(Xr) = 
1

0

( )r

x

x f x
�
�

= f(1) = 
0

,n

n

p

p p�
 r = 1, 2, ...

The m.g.f of the Theorem 1 is given by

M(t) = E(tX)

1

0

( )tx

x

x f x
�

��

= f(0) + et f(1)

0 0

t
n n

n n

p p e

p p p p

� �� �� � � �� �� �� � � �

0

0

,
t

n

n

p p e

p p

�
�

�  for all real t.

Skewness and Kurtosis of Theorem 1

Skewness is given by

3
X

E
��� �

� �
�� �

= 
3

3

( )X
E
� ���
� �

�� �
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0
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Similarly, kurtosis is given by

4
X

E
��� �

� �
�� �
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4
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2 3 4
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A random variable X of continuous type is said to be uniform distributed
over the interval (0, 1), if its p.d.f. is given by

f(x) = 1, 0 < x < 1 (1.3)

= 0, elsewhere.

Finally, we present the following result which is a generalization of
(1:3) for the random variable X of the continuous type involving (n + 1)
parameters.

Theorem 2: Let p
0
, p

1
, p

2
, ..., p

n
 be non­negative real numbers such that 0

< p
n
 � p

n–1
 � ... � p

2
 � p

1
 � p

0
 � 0. Then the function

f(x) = f(x, p
0
, p

1
, p

2
, ..., p

n
)

1

np
� [(n + 1)(p

n
 – p

n–1
)xn + n(p

n–1
 – p

n–2
)xn–1 +...+ 2(p

1
 – p

0
)x + p

0
], (1.4)

= elsewhere, 0 < x < 1,

is probability density function (p.d.f) of the random variable X of the
continuous type.
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Remark: Taking p
0
 = p

1
 =, ..., = p

n
 in Theorem 2, we get (1.3).

Proof of Theorem 2: Clearly f(x) � 0 for all x, we show

1

0

( ) 1.f x dx ��
We have

1

0

( )f x dx� = 

1

1 1 0 0

0

1
(( 1)( ) ... 2( ) )n
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n

n p p x p p x p dx
p

�� � � � � ��
1 1 1
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1
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p

�

� �
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1 1 0 0

1
( ... )n n

n

p p p p p
p
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1
( ) 1.n

n

n n

p
p

p p
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Hence f(x) is a p.d.f. of the random variable X of continuous type. This
completes the proof of Theorem 2.

A Special case

If we take n = 1, in Theorem 2, we get

f(x) = 
1

1

p
(2(p

1
 – p

0
)x + p

0
), 0 < x < 1, 0 < p

2
 > p

1
 > p

0
 � 0 (1.5)

= 0, elsewhere.

Here mean of the distribution (1.3) is given by

� = E(X) = 

1

1 0 0

1 0

1
(2( ) )x p p x p dx

p
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1
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11 2
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1 2
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So that, variance of (1.3) is given by

�2 = E(X – �)2

= E(X2) – �2
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Again, m.g.f. of the distribution 1.3 is

M(t) = E(etX)

1

1 0 0

10

1
(2( ) )txe p p x p dx

p
� � ��

1 1
1 0 0

1 10 0

2( ) tx txp p p
xe dx e dx

p p

�
� �� �

1 11
1 0 0

0 01 10

2( ) tx tx txp p pe e e
x dx x

p t t p t

� �� � � � �
� � �� �� � � �� �� � � �� �

�

1

1 0 0

01 1

2( ) 1 1t tx tp p pe e e

p t t t p t t

� �� � � � � � �
� � � �� � � �� � � �� � � � � �� �

1 0 0

2
1 1

2( ) ( 1) 1 1
,

t tp p pe t e

p t p t t

� � � � �� �
� � �� � � �

� � � �

for all real values of t.

Remark 1: As in the case n = 1, a number of dierent interesting models
can be obtained from Theorem 2, for other values of n = 2, 3, 4...

CONCLUSIONS

In this paper the author concludes the following:

1. For p
0
 = p

1
 =, ..., = p

n
 the statistical probability model connecting n + 1

non­negative real numbers p
0
, p

1
, ..., p

n
 reduces to probability model of

a tossing of a coin.

2. For p
0
 = p

1
 =, ..., = p

n
 the statistical probability model connecting n + 1

non­negative real numbers p
0
, p

1
, ..., p

n
 reduces to Uniform distribution

of the continuous type.

3. For various numerical values of the parameters p
0
, p

1
, ..., p

n
, the two

models presented in the paper yield a number of statistical models
which forms the bases of further investigations.
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